Myosin MgADP release rate decreases at longer sarcomere length to prolong myosin attachment time in skinned rat myocardium.
نویسندگان
چکیده
Cardiac contractility increases as sarcomere length increases, suggesting that intrinsic molecular mechanisms underlie the Frank-Starling relationship to confer increased cardiac output with greater ventricular filling. The capacity of myosin to bind with actin and generate force in a muscle cell is Ca(2+) regulated by thin-filament proteins and spatially regulated by sarcomere length as thick-to-thin filament overlap varies. One mechanism underlying greater cardiac contractility as sarcomere length increases could involve longer myosin attachment time (ton) due to slowed myosin kinetics at longer sarcomere length. To test this idea, we used stochastic length-perturbation analysis in skinned rat papillary muscle strips to measure ton as [MgATP] varied (0.05-5 mM) at 1.9 and 2.2 μm sarcomere lengths. From this ton-MgATP relationship, we calculated cross-bridge MgADP release rate and MgATP binding rates. As MgATP increased, ton decreased for both sarcomere lengths, but ton was roughly 70% longer for 2.2 vs. 1.9 μm sarcomere length at maximally activated conditions. These ton differences were driven by a slower MgADP release rate at 2.2 μm sarcomere length (41 ± 3 vs. 74 ± 7 s(-1)), since MgATP binding rate was not different between the two sarcomere lengths. At submaximal activation levels near the pCa50 value of the tension-pCa relationship for each sarcomere length, length-dependent increases in ton were roughly 15% longer for 2.2 vs. 1.9 μm sarcomere length. These changes in cross-bridge kinetics could amplify cooperative cross-bridge contributions to force production and thin-filament activation at longer sarcomere length and suggest that length-dependent changes in myosin MgADP release rate may contribute to the Frank-Starling relationship in the heart.
منابع مشابه
Increased Titin Compliance Reduced Length-Dependent Contraction and Slowed Cross-Bridge Kinetics in Skinned Myocardial Strips from Rbm20ΔRRM Mice
Titin is a giant protein spanning from the Z-disk to the M-band of the cardiac sarcomere. In the I-band titin acts as a molecular spring, contributing to passive mechanical characteristics of the myocardium throughout a heartbeat. RNA Binding Motif Protein 20 (RBM20) is required for normal titin splicing, and its absence or altered function leads to greater expression of a very large, more comp...
متن کاملMyofilament lattice spacing as a function of sarcomere length in isolated rat myocardium.
The Frank-Starling relationship of the heart has, as its molecular basis, an increase in the activation of myofibrils by calcium as the sarcomere length increases. It has been suggested that this phenomenon may be due to myofilaments moving closer together at longer lengths, thereby enhancing the probability of favorable acto-myosin interaction, resulting in increased calcium sensitivity. Accor...
متن کاملCardiac Myosin Binding Protein-C Phosphorylation Modulates Myofilament Length-Dependent Activation
Cardiac myosin binding protein-C (cMyBP-C) phosphorylation is an important regulator of contractile function, however, its contributions to length-dependent changes in cross-bridge (XB) kinetics is unknown. Therefore, we performed mechanical experiments to quantify contractile function in detergent-skinned ventricular preparations isolated from wild-type (WT) hearts, and hearts expressing non-p...
متن کاملEffects of MgADP on length dependence of tension generation in skinned rat cardiac muscle.
The effect of MgADP on the sarcomere length (SL) dependence of tension generation was investigated using skinned rat ventricular trabeculae. Increasing SL from 1.9 to 2.3 microm decreased the muscle width by approximately 11% and shifted the midpoint of the pCa-tension relationship (pCa(50)) leftward by about 0.2 pCa units. MgADP (0.1, 1, and 5 mmol/L) augmented maximal and submaximal Ca(2+)-ac...
متن کاملStrong Binding of Myosin Modulates Length-Dependent Ca Activation of Rat Ventricular Myocytes
Reductions in sarcomere length (SL) and concomitant increases in interfilament lattice spacing have been shown to decrease the Ca sensitivity of tension in myocardium. We tested the idea that increased lattice spacing influences the SL dependence of isometric tension by reducing the probability of strong interactions of myosin crossbridges with actin, thereby decreasing cooperative activation o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 309 12 شماره
صفحات -
تاریخ انتشار 2015